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Genetic AlgorithmsGenetic Algorithms

• Genetic Algorithms are popular because
-Easy to use
-Can be applied without prior knowledge
-Parallelization can used

• Problems in Genetic Algorithms
-Complex interactions among variables
-Sometimes very difficult to get solutions
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Estimation of Distribution 
Algorithm (EDA)

Estimation of Distribution 
Algorithm (EDA)

• Use probabilistic models for 
recombination

• Learn and sample that probabilistic 
models to generate new solutions

• Selection and replacement strategy of 
GA can be used

• Allow adaptation and improve 
expressiveness
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Other Names of EDAsOther Names of EDAs

• Probabilistic Model Building Genetic 
Algorithms (PMBGAs)

• Distribution Estimation Algorithms 
(DEAs)

• Iterated Density Estimation Algorithms 
(IDEAs)
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Pseudocode of EDAPseudocode of EDA
1. Generate initial population
2. Select some promising individuals
3. Build probabilistic model using selected 

individuals
4. Sample the model to generate new 

individuals
5. Replace old population by new individuals 
6. If Termination_Criteria not satisfied go to 2
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Discrete EDAsDiscrete EDAs

• Univariate: no dependency among variables
Example:UMDA,PBIL,CGA

• Bivariate: pairwise dependency
Example:MIMIC,COMIT,BMDA

• Multivariate:multiple dependencies
Example:BOA,EBNA, ECGA,FDA,LFDA
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Univariate EDAsUnivariate EDAs
• Univariate Marginal Distribution 

Algorithm(UMDA) (Mühlenbein et.al, 1996)
• Population Based Incremental Learning 

(PBIL) (Baluja, 1994)
• Compact Genetic Algorithm (CGA) (Harik

et.al,1998)
• PBIL and CGA use probability vector (p) 

while UMDA uses population
• PBIL and CGA use different update rules 

for p
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UMDAUMDA
• Uses a probability vector p=(p1,p2,…,pn)

-pi is the probability of 1 in ith position
• Compute p from selected individuals
• Generate 1 in the position i with prob. pi

• Approximates the behavior of uniform 
crossover of GA

• Problem: Joint probability may be 0 due to
some pi=0 and may converge to local optimal
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• Now joint probability distribution>0
• Marginal probability of each variable Xi 

is calculated as

- ri is the number of different values Xi may 
take

Laplace Correction for UMDALaplace Correction for UMDA
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Bivariate EDAsBivariate EDAs

• Mutual Information Maximization for Input 
Clustering (MIMIC) (De Bonet et al.,1997)

• Combining Optimizers with Mutual 
Information Trees (COMIT) (Baluja et al., 
1997)

• Bivariate Marginal Distribution Algorithm 
(BMDA)(Pelikan et al. 1999)

• They learn two order structures and are easy 
to use
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Graphical Representations of 
Bivariate EDAs

Graphical Representations of 
Bivariate EDAs
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Multivariate EDAsMultivariate EDAs
• Extended Compact Genetic Algorithm 

(ECGA) (Harik 1999)
• Bayesian Optimization Algorithm (BOA) 

(Pelikan et al.,2000)
• Estimation of Bayesian Networks 

Algorithm (EBNA) (Etxeberria et al., 1999)
• Factorized Distribution Algorithm (FDA)

(Mühlenbein et al.,1999)
• Learning Factorized Distribution 

Algorithm (LFDA) (Mühlenbein et al.,1999)
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BOA,EBNA and LFDABOA,EBNA and LFDA
• Uses Bayesian Network but different score 

metrics:
- BOA: Bayesian Dirichlet Equivalence (BDe) 

metric
- EBNA: BIC, K2+Penalization scores
- LFDA: BIC but restriction on no. of parents
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Structure Learning in Bayesian 
Network

Structure Learning in Bayesian 
Network

1. Start with empty graph(no edges)
2. Apply primitive graph operators
3. Pick the operation that increases 

score
4. Perform that operation 
5. If no improvement or constraints 

violates, stop else go to 2.
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FDAFDA

• Applicable to Additively Decomposable 
Problem 

• Uses Boltzmann Seletion and calculate
Boltzmann distribution

• Needs structure learning as well as 
parameters learning
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ECGAECGA
• Uses Greedy Search and BIC score
• For Search

- Start with one bit group
- Merge two groups if improves
- No more improvement, finish
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Summary of Multivariate EDAsSummary of Multivariate EDAs

• Bayesian Network is mostly used
• But learning model structure is very 

difficult (NP hard)
• Can successfully solve problems 

decomposable into sub problems of 
bounded difficulty
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Different Problems Considered  Different Problems Considered  

1. OneMax
2. Subset Sum
3. N-Queen
• Algorithm used: UMDA with Laplace

correction
• Selection( for UMDA): Truncation 

Selection (best half of the population) 
• Replacement: Elitism
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OneMax FunctionOneMax Function

• Return sum of the bits
• Optimum: All 1s ({1,1,…,1})
• Fitness: sum of variables in an 

individual
• Terminate: when fitness=problem size   
• GA:One point crossover and mutation
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Subset Sum ProblemSubset Sum Problem

• Definition: What subset of a set of integers 
has the sum equal to expected weight

• Example: Given
I={1,3,5,6,8,10}, W=14

Solution: {1,3,10},{3,5,6},{6,8},{1,5,8}
• Trivial case: Sum of all integers=Weight
• Random case: Sum of all integers>Weight
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UMDA and GA for Subset Sum 
Problem

UMDA and GA for Subset Sum 
Problem

• Fitness: Absolute difference between sum 
of variables in an individual and expected 
weight

• Termination: Sum of variables in an 
individual equal to expected weight

• GA: one point crossover and mutation
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n-Queen Problemn-Queen Problem
• Definition: place n queens on a n×n

chessboard so that no two queens attack 
each other i.e. they are not on the same 
row,column or diagonal

• How? If abs(rowi-rowj)=abs(columni-columnj)
• Example :4-Queen solutions
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Solution of n-Queen ProblemSolution of n-Queen Problem

• Solution Encoded:{X1,X2,…,Xn}
-Xi indicates the column position of ith queen 
at row i

• Probability Vector: 2-dimensional
-Each pij indicates the probability of variable
Xi taking its jth value at position i

• Fitness: no. of queens at non-attacking 
positions
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GA for n-Queen ProblemGA for n-Queen Problem

• Crossover: Partially Matched 
Crossover(PMX)

• Mutation:Greedy Swap Mutation
• Termination:When all the queens are 

at non attacking positions
• Very efficient than UMDA
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Local Heuristics for n-QueenLocal Heuristics for n-Queen

• To improve performance of UMDA 2-opt 
algorithm as local heuristic used

• But GA with PMX still better 
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Probabilistic Modification for 
n-Queen

Probabilistic Modification for 
n-Queen

• When a variable is selected for a position, its 
probability for other positions must be zero

• If Roulette Wheel selection is used probabilistic 
modification ensure distinct values for different 
positions
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Experimental Results 
(Subset Sum Problem)-I
Experimental Results 

(Subset Sum Problem)-I
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Experimental Results
(Subset Sum Problem)-II

Experimental Results
(Subset Sum Problem)-II

Average generations required
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Experimental Results
(OneMax Function)

Experimental Results
(OneMax Function)
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Experimental Results
(n-Queen Problem)

Experimental Results
(n-Queen Problem)

Average Time(sec) Required for n-Queen problem
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Summary Summary 
• UMDA better than GA for some 

linear problems of independent 
variables

• To Capture higher order 
dependency we have to consider 
BOA, ECGA, FDA or EBNA

• BOA and EBNA may be general 
approach for a problem
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Future WorksFuture Works

• Understand the behavior of BOA, 
EBNA, FDA etc.

• Apply EDA to permutation domains 
• Develop an EDA for discrete and 

continuous domain
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